Chapter 15
Structured Outputs
Return validated JSON from agent workflows using JSON Schema, Zod, or Pydantic. Get type-safe, structured data after multi-turn tool use.
Structured outputs let you define the exact shape of data you want back from an agent. The agent can use any tools it needs to complete the task, and you still get validated JSON matching your schema at the end. Define a JSON Schema for the structure you need, and the SDK guarantees the output matches it.
For full type safety, use Zod (TypeScript) or Pydantic (Python) to define your schema and get strongly-typed objects back.
Why structured outputs?
Agents return free-form text by default, which works for chat but not when you need to use the output programmatically. Structured outputs give you typed data you can pass directly to your application logic, database, or UI components.
Consider a recipe app where an agent searches the web and brings back recipes. Without structured outputs, you get free-form text that you'd need to parse yourself. With structured outputs, you define the shape you want and get typed data you can use directly in your app.
Without structured outputs
Here's a classic chocolate chip cookie recipe!
Chocolate Chip Cookies
Prep time: 15 minutes | Cook time: 10 minutes
Ingredients:
- 2 1/4 cups all-purpose flour
- 1 cup butter, softened
...
To use this in your app, you'd need to parse out the title, convert "15 minutes" to a number, separate ingredients from instructions, and handle inconsistent formatting.
With structured outputs
Typed data you can use directly in your UI.
Quick Start
Define a JSON Schema describing the shape of data you want, then pass it to query() via the outputFormat option. When the agent finishes, the result message includes a structured_output field with validated data matching your schema.
import { query } from '@anthropic-ai/claude-agent-sdk'
// Define the shape of data you want back
const schema = {
type: 'object',
properties: {
company_name: { type: 'string' },
founded_year: { type: 'number' },
headquarters: { type: 'string' }
},
required: ['company_name']
}
for await (const message of query({
prompt: 'Research Anthropic and provide key company information',
options: {
outputFormat: {
type: 'json_schema',
schema: schema
}
}
})) {
// The result message contains structured_output with validated data
if (message.type === 'result' && message.structured_output) {
console.log(message.structured_output)
// { company_name: "Anthropic", founded_year: 2021, headquarters: "San Francisco, CA" }
}
}Type-safe schemas with Zod
Instead of writing JSON Schema by hand, use Zod to define your schema. Zod generates the JSON Schema for you and lets you parse the response into a fully-typed object with autocomplete and type checking.
import { z } from 'zod'
import { query } from '@anthropic-ai/claude-agent-sdk'
// Define schema with Zod
const FeaturePlan = z.object({
feature_name: z.string(),
summary: z.string(),
steps: z.array(z.object({
step_number: z.number(),
description: z.string(),
estimated_complexity: z.enum(['low', 'medium', 'high'])
})),
risks: z.array(z.string())
})
type FeaturePlan = z.infer<typeof FeaturePlan>
// Convert to JSON Schema
const schema = z.toJSONSchema(FeaturePlan)
// Use in query
for await (const message of query({
prompt: 'Plan how to add dark mode support to a React app',
options: { outputFormat: { type: 'json_schema', schema } }
})) {
if (message.type === 'result' && message.structured_output) {
// Validate and get fully typed result
const parsed = FeaturePlan.safeParse(message.structured_output)
if (parsed.success) {
const plan: FeaturePlan = parsed.data
console.log(`Feature: ${plan.feature_name}`)
}
}
}Benefits
- - Full type inference with TypeScript
- - Runtime validation with
safeParse() - - Better error messages
- - Composable, reusable schemas
Output Format Configuration
The outputFormat option accepts an object with:
| Property | Type | Description |
|---|---|---|
type | "json_schema" | Set to "json_schema" for structured outputs |
schema | object | A JSON Schema object defining your output structure |
The SDK supports standard JSON Schema features including all basic types (object, array, string, number, boolean, null), enum, const, required, nested objects, and $ref definitions.
Example: TODO Tracking Agent
This example demonstrates how structured outputs work with multi-step tool use. The agent needs to find TODO comments in the codebase, then look up git blame information for each one. It autonomously decides which tools to use (Grep to search, Bash to run git commands) and combines the results into a single structured response.
import { query } from '@anthropic-ai/claude-agent-sdk'
// Define structure for TODO extraction
const todoSchema = {
type: 'object',
properties: {
todos: {
type: 'array',
items: {
type: 'object',
properties: {
text: { type: 'string' },
file: { type: 'string' },
line: { type: 'number' },
author: { type: 'string' },
date: { type: 'string' }
},
required: ['text', 'file', 'line']
}
},
total_count: { type: 'number' }
},
required: ['todos', 'total_count']
}
// Agent uses Grep to find TODOs, Bash to get git blame info
for await (const message of query({
prompt: 'Find all TODO comments and identify who added them',
options: { outputFormat: { type: 'json_schema', schema: todoSchema } }
})) {
if (message.type === 'result' && message.structured_output) {
const data = message.structured_output
console.log(`Found ${data.total_count} TODOs`)
}
}The schema includes optional fields (author and date) since git blame information might not be available for all files. The agent fills in what it can find and omits the rest.
Error Handling
Structured output generation can fail when the agent cannot produce valid JSON matching your schema. When an error occurs, the result message has a subtype indicating what went wrong.
| Subtype | Meaning |
|---|---|
success | Output was generated and validated successfully |
error_max_structured_output_retries | Agent couldn't produce valid output after multiple attempts |
for await (const msg of query({ prompt, options })) {
if (msg.type === 'result') {
if (msg.subtype === 'success' && msg.structured_output) {
// Use the validated output
console.log(msg.structured_output)
} else if (msg.subtype === 'error_max_structured_output_retries') {
// Handle the failure
console.error('Could not produce valid output')
}
}
}Tips for Avoiding Errors
Keep schemas focused
Deeply nested schemas with many required fields are harder to satisfy. Start simple and add complexity as needed.
Match schema to task
If the task might not have all the information your schema requires, make those fields optional.
Use clear prompts
Ambiguous prompts make it harder for the agent to know what output to produce.